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We analyse the steady streaming generated in an infinite elliptical tube containing 
a viscous, incompressible fluid when the boundary oscillates in such a way that the 
area and ellipticity of the cross-section vary with time but remain independent of 
the longitudinal coordinate. The parameters a-' = (v/Qag)i and B = U,/a, Q, where v 
is the kinematic viscosity, Q is the oscillation frequency, a, is the undisturbed 
semi-major axis and U, is a typical wall velocity, are taken to be small, so that the 
Stokes layer is thin and the interaction which leads to the steady streaming can be 
analysed as a small perturbation. Coupled axial and transverse velocities, both 
oscillatory and steady, are generated. A complication is the need to specify the 
tangential as well as the normal velocity component on the tube wall, which requires 
an assumption concerning its elastic properties. We have considered two cases: (i) 
constant major axis, in which all boundary points move parallel to the minor axis, 
and (ii) an inextensible wall. The three-dimensional steady streaming in the core of 
the tube is computed only in the limit of small steady-streaming Reynolds number, 
R, = e2a2. 

1. Introduction 
The work described in this paper arose from the study of oscillations in collapsible 

tubes such as blood vessels (Pedley 1980, Chapter 6). In  certain conditions, large- 
amplitude, high-frequency oscillations in cross-sectional area and cross-sectional 
shape arise spontaneously at a certain location in a fluid-filled flexible tube, and these 
are coupled to oscillations in the emerging flow rate (Conrad 1969). A complete 
analysis of such oscillations is as yet an intractable problem, because of the great 
complexity of analysing either large, unsteady, three-dimensional deformations of an 
elastic cylinder or unsteady, three-dimensional, viscous flow in a non-uniform tube, 
and the even greater complexity when the two problems are combined. This paper 
is a contribution solely to the fluid mechanics, although a little thought has to be 
given to the elasticity. 

The fluid is taken to be viscous and incompressible with kinematic viscosity v. To 
simplify the fluid mechanics we consider: (a) a tube with uniform cross-section (i.e. 
independent of the longitudinal coordinate z ) ,  with the consequence that flow 
separation is suppressed, although it is believed to be most important in real 
collapsible-tube oscillations (Cancelli & Pedley 1985) ; (b) a tube with elliptical 
cross-section, which is known to be a good approximation for a partially collapsed 

t Permanent address: Centre for Atmospheric and Fluids Science, Indian Institute of 
Technology-Delhi, Hauz Khas, New Delhi 110016, India. 
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tube (Moreno et al. 1970) ; (c) small-amplitude oscillations. Because the cross-sectional 
area is not constant in time, an oscillatory axial flow is generated, with a velocity 
whose magnitude is proportional to z, measured from a cross-section across which 
there is zero flow rate. Moreover, because the cross-sectional shape is not constant, 
transverse oscillatory motions are also generated, and these are coupled to the axial 
flow through the continuity equation as well as the axial momentum equation, so 
the flow is three-dimensional. If the frequency Q is sufficiently high (i.e. 
a* = Qai/v 8 1, where a,, is a typical tube diameter), these primary oscillations can 
be analysed in two regions, an inviscid core and a viscous (Stokes) boundary layer. 
Because the boundary-layer problem is nonlinear, a non-zero mean flow, or steady 
streaming, is generated at second order in an expansion in powers of amplitude. As 
is well-known, the tangential components of the steady-streaming velocity do not 
tend to zero at the edge of the boundary layer, and they drive a non-zero mean flow 
in the core. This is a Stokes flow if the steady-streaming Reynolds number R, is small, 
and may have a tractable asymptotic form if R, is large.? Such steady streaming has 
been familiar for many years in both internal and external flow (Rayleigh 1883 ; Riley 
1967; Lyne 1971), but as far as the authors are aware this is the first genuinely 
three-dimensional case to be analysed (even this problem is not fully general because 
the z-dependence of the variables is very simple). 

The corresponding two-dimensional and axisymmetric problems were solved by 
Secomb (1978). He showed that the (axial) steady-streaming velocity at the edge of 
the Stokes layer was directed in the direction of decreasing 121, inwards from the far 
ends of the channel. There has to be a corresponding outflow near the centreplane 
of the channel by conservation of mass. Thus mean vorticity, generated at the wall, 
tends to accumulate near z = 0 and to be swept away again in the centre, The 
consequence is that, even at large values of R,, mean vorticity is distributed across 
the whole cross-section and the flow cannot be described by bmndary-layer theory, 
unlike most external steady-streaming flows (Riley 1967). Interestingly, Secomb 
predicted (in the two-dimensional case) that the profile of mean axial velocity does 
not depend strongly on R,, being proportional to z cos xy/a in the limit R, +a and 
to +z(l -3y2/a2) in the limit R,+O (here y is the cross-channel coordinate and the 
mean wall positions are at y = &a). One of the aims of the present paper is to predict 
the direction of the steady-streaming velocity at the edge of the Stokes layer: is the 
axial component always negative, i.e. directed towards z = 0 as in Secomb’s analysis, 
or are there cases where it is positive? It turns out that, in general, this velocity 
component has a different sign at different positions round the tube wall. It also turns 
out that simple analytical formulae for the steady-streaming velocity profiles outside 
the Stokes layer are not in general available even for small R,. 

The primary inviscid core flow, and hence the oscillatory tangential components 
of the velocity at the outer edge of the Stokes layer, are determined entirely by the 
normal component of the wall velocity. However, the transverse velocity components 
in the Stokes layer also depend on the tangential component of the wall velocity. This 
proves to be a major difficulty, for in order to specify this component it is in general 
necessary to solve a problem in dynamic elasticity, and the fluid mechanics cannot 

t a, is generally large both for self-excited oscillations in collapsible tubes (Conrad 1969; 
a2 x 2040) and for the pulse wave in arteries (e.g. a8 x 170 for the fundamental frequency in the 
human aorta, a* x 5 in coronary arteries, which suffer periodic compression during contraction of 
the cardiac muscle). Thus a sufficiently small but still measurable amplitude of oscillation may 
render R, of order 1 or less: R, is defined in (4.1) below aa e W ,  where e is the ratio of the amplitude 
of wall displacement to a,. 
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be uncoupled from the solid mechanics. To overcome this we here examine only two 
relatively simple cases. In  one the major axis of the ellipse is held constant while the 
minor axis varies (not a bad approximation for veins according to Moreno et at?. (1970, 
figure 8), but the problem is further simplified by requiring every element of the wall 
to move parallel to the minor axis. The other case is a rational approximation for 
a wall consisting of a thin membrane with large Young’s modulus: the tube wall is 
taken to be inextensible, so that not only the perimeter but also every material 
element of the wall keeps the same length throughout the oscillation. 

An outline of the paper is as follows. The problem is formulated in $2,  and the 
dimensionless velocity components are specified both in Cartesian coordinates and 
in a curvilinear coordinate system suitable for boundary-layer analysis, in which the 
transverse coordinates reduce, near the wall, to distance along and normal to the wall. 
Solutions for the inviscid core and the Stokes layer are derived in $3,  culminating 
in a prediction of the tangential steady-streaming velocity at the edge of that layer. 
The core steady-streaming problem is defined in $4, while the wall motions are 
specified, and the core boundary conditions computed, in $5.  In  $6 the core problem 
is solved numerically in the limit of small R,, and the results are discussed. Finally 
in $7 the as yet unsolved large-R, problem is formulated, and future extensions of 
the present work are discussed. 

2. Formulation 

to be 
The equation of the elliptical tube wall in Cartesian coordinates (figure 1) is taken 

P ( z ,  y, t )  = -+-- x2 y2  1 = 0, 
a2 ( t  ) b2 ( t )  

where 2a is the major axis and 2b the minor axis. Elements of the wall are taken to 
move only in the transverse direction, 80 that a typical element ( X ,  Y, 2) satisfying 
P ( X ,  Y , t )  = 0 has velocity (8, f, 0). We shall also need to know the intrinsic 
coordinates (8, $) of the element in the (5, y)-plane, as well as the normal ( u , ~ )  and 
tangential (uSw) components of its velocity; the senses of n and s are shown on fig- 
ure 1. It is convenient to specify the position of the element ( X ,  Y )  in terms of its eccen- 
tric angle 8, so that 

moreover the intrinsic coordinates are given by 

X( t )  = a(t) cos8(t), Y ( t )  = b(t) sine@); (2 .2)  

b 
tan$ =-cote ,  a (2 .3)  

s = s,” (a2 sin2 8’ + b2 cos2 8’ de’. 

In  terms of a, b, 8 and their time derivatives, the normal and tangential velocity 
components of the element are 

(cib cos2 0 + ba sin2 8 )  
u,, = - ( X  sin $+ f cos$) = - , (2.5) c 

(bb-a&) sin8 cost9 u,,=-Xcos$++sin$=cB+ 
c , 

where c = (az sina 8+ b2 cos2e)i. (2 .7)  
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/' 

FIGURE 1. Definitions of coordinate systems and velocity components. 

As shown by Secomb (1978) we can analyse the fluid motion driven by the wall 
motions independently of any net through flow driven by an applied pressure 
gradient, and we therefore seek a solution in which the axial velocity u, is proportional 
to z while the transverse velocities are independent of z. Thus in Cartesian coordinates 
we take 

where p is the pressure, and the Navier-Stokes equations reduce to 

awl awl aw 1 a2wl a Z w  

at ax ay P 
-+u,-+u '+w; =- -p2+v( -+- )  a x 2  

ay2 9 

au, au 
ax ay 1 9 

- + A + w  = o  

(2.10) 

(2.11) 

(2.12) 

where p is the fluid density. The boundary conditions are that w1 = 0 and u, and uy 
are given on the wall. Although there are only two independent space variables and 
w1 does not appear in (2.9) and (2.10), the problem for u, and uy is not one of 
two-dimensional flow because these components are coupled to w1 through the 
continuity equation (2.12). 

We are interested in solving the problem for high-frequency, small-amplitude 
oscillations of the wall, so to first order in the amplitude there will be an inviscid core 
with thin Stokes layers at the wall. The inviscid core flow is a solution of (2.9)-(2.12) 
with v = 0, and the only boundary condition to be satisfied is that the normal 
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component of the fluid’s velocity at the wall is equal to that of the wall, un, (equation 
(2.5)). Solution of the inviscid problem will lead to predictions of tangential velocities 

= u8E, w 1  = WIE (2.13) 

at the wall, where the suffix E represents the fact that these are the external values 
to which the velocities in the Stokes layer must tend. On the wall itself we have 

U8 = U8,, w1 = 0. (2.14) 

In  order to analyse the Stokes layer in a systematic way, it is advantageous to work 
in a moving orthogonal coordinate system, attached to the wall. In the boundary 
layer, the coordinates are s, the arclength measured along the wall, n, the distance 
normal to the wall, and 2, with corresponding velocity components u8(8, n, t ) ,  u,(s, n, t )  
and u, = zwl(s, n, t )  (see figure 1). The full NavierStokes equations in this coordinate 
system are very complex but are a straightforward extension of the two-dimensional 
equations given by Longuet-Higgins (1953). Here we write the form they take under 
the boundary-layer approximation, with the following non-dimensionalization in 
which a transverse lengthscale is a,, a wall velocity scale is U,, and a frequency scale 
is Q: 

S an 

a, a0 
8’ = -, 12‘ = - , t’ = Qt,  I 

1 

K = Ka,, I 
where 2 is the wall curvature. We introduce two dimensionless parameters, 

a=u,(F?, e = -  UO 
a,Q’ 

(2.15) 

(2.16) 

the former being the (Womersley) frequency parameter (a % 1) and the latter the 
amplitude parameter (e + 1). The boundary-layer equations are (dropping the primes 
on s, n, t )  

au av 
-+-+w = 0. 
as an 

The boundary conditions are 
(2.19) 

u = u,(s,t), v = w = 0 onn = 0, 

u - uE(8, t ) ,  w N w&, t )  asn+oo, (2.20) 

where u,(8, t ) ,  for example, is evaluated at time t using (2.6) in which 8 is determined 
by inverting (2.4) and 8 comes from differentiating (2.4) with B given by the nature 
of the wall elasticity. 
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3. Core and Stokes-layer solutions 
3.1. The inviscid core 

As stated earlier, the solution here depends only on the normal velocity of the wall, 
and must satisfy DF/Dt = 0, where P is given by (2.1). It is readily verified that the 
(dimensional) solution of (2.12) that satisfies this condition is 

the pressure terms p ,  and p ,  may be obtained by integrating (2.9)-(2.11). Trans- 
formation of (3.1) from the (5, y )  coordinate system to the (s,n)-system gives the 
oscillatory, transverse, tangential velocity at the edge of the Stokes layer, u , ~ ,  as 
follows : 

7 (3.2) 
(b6-aci) sin8 cos8 

C 
u8E = 

where c is given by (2.7), and 0 is again obtained by inverting (2.4). The longitudinal 
velocity at the edge of the Stokes layer is, from (3.1), given by 

W1* = - -+- , (511 9 (3.3) 

which we may note is independent of position on the boundary. 

3.2. Stokes layer 
Equation (3.1) is valid for all functions a(t), b( t ) .  In  analysing the boundary layer, 
however, we restrict attention to sinusoidal oscillations at large a and small E .  Large 
a means the Stokes layer has thickness small compared with a,, and occupies a region 
in which n = O(1); small E means that we can expand the variables u, w, w (equation 
2.15) in powers of E .  The leading-order terms will be linear solutions of the diffusion 
equation ((2.17) and (2.18) with E = 0), representing oscillations of dimensionless 
frequency 1 , as in the classical Stokes layer. At the next order in E there is, in addition 
to another forced term of frequency 1, a nonlinear interaction leading to oscillations 
of frequency 2 and to a non-zero mean term. We therefore write 

u = 9{u,(s, n) eit +E[u,,(s, n)  + ull(s, n) eit + ul&, n) ezit] + O(se )}, (3.4) 

LUE, uw, 2rwl  = 9{(UOE, uOw, WOE, eit>, (3.5) 

with similar expressions for v and w ; we also write 

where all the coefficients of eit on the right of (3.5) are functions of s. The quantities 
of greatest interest are the (real) steady-streaming velocities ul0 and wl0. 

The solutions for the primary Stokes layer are 

w, = wOE(s) [ 1 -exp (-%.)I, 
au, 

wo = -5, (%+W,) dn. 
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Substitution of (3.5) and (3.6) into the O(s)-terms in (2.17) and (2.18) then yields the 
following problems for ul0 and wl0 : 

(where * and C.C. both mean complex conjugate), with boundary conditions 
ul0 = wl0 = 0 on n = 0, and ul0, wl0 are bounded as n + a  (as usual in steady-streaming 
problems it is not possible to impose the a priori reasonable conditions ul0, wlo+O 
as n + a ) .  

Consider one term, with its complex conjugate, on the right-hand side of (3.7) or 
(3.8) and let its contribution to the solution be ulo (or wl0) = q(s, n) .  Now any such 
term except one involving vo (e.g. $o au,*/as) can be written in the form 

Then 

-- " q -  AC*+A*C+(BD*+B*D) exp(-d2n)  
an2 

(l-i) 
+(BC*+A*D) exp +(B*C+AD*)exp 

the term not involving n, AC* + A*C, can be discounted, because the sum of all such 
terms in (3.7) or (3.8) is zero. The solution of (3.9) that is bounded as n+cO is then 

q = E+ h(BD* + B*D) exp ( - 4 2 n )  - i (BC* + A*D) exp ( -- (:;In) 

(l- i)  
+i(B*C+AD*) exp( - -n) ,  

where E is a constant of integration which is not in general zero because it must be 
chosen so that q = 0 at n = 0. Hence, as n+m,  

q + E = - W(BD* ) - 29(BC* + A *D) . (3.10) 

The terms involving vo can be dealt with in a similar manner. If we write ulo+ U(s ) ,  
wl0+ W(s)  as n+a, we can put all the results of the form (3.10) together to obtain 
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These equations are in fact independent of the particular geometry of the problem. 
In our case wOE, equation (3.3), is independent of s, so the first term on the right-hand 
side of (3.12) is zero. 

4. The core steady-streaming problem 
The non-zero mean velocities at the edge of the boundary layer, represented by 

U(s)  and W(s),  drive a steady-streaming flow in the core. The equations governing 
this flow are most conveniently expressed in Cartesian coordinates and are the same 
as (2.9)-(2.12) without the a/at terms. They can be made dimensionless by scaling 
lengths with a,, velocities with the scale eU,, derived from (2.15) and (3.4), p, with 
p e 2 q ,  and p, with pe"/a:. Thus (formally) p is set equal to 1 and u is replaced by 
G1 where R, is the steady-streaming Reynolds number, given by 

The boundary conditions are, as usual (Riley 1967), applied at the mean position of 
the wall, given by (2.1) with a = a,, b = b, where a, and b, are constants. These 
conditions are 

(4.2) 

u, = - U(8) cos $(s), 

w1 = W(S), 

uy = U(s)  sin$(s), 

where $ is given by (2.3) when t? is obtained from (2.4). The quantities U(s)  and W(s)  
can be evaluated directly from (3.11) and (3.12) once the wall motion is completely 
specified; this is done for particular examples in the next section. 

5. Specification of wall motion 
The above is formulated so that any small-amplitude oscillation of the elliptical 

boundary can be incorporated. In order to obtain numerical results, however, it  is 
necessary to consider particular wall motions. After having checked that we obtain 
Secomb's (1978) results when the cross-section is circular, we shall examine two 
special cases, as described in $1. 

Case 1. Constant major axis 

Here we set a = a, and let b vary, but we further insist that every element of the 
wall moves parallel to the minor axis so that t? = constant for each element (see (2.2)). 
In this case (2.6) and (3.2) give 

b6 sin t? cos t9 
USE = us, = 3 

C 

while (2.5) and (3.3) give 
-6a sinat? 

, 
C 

Unw = 

6 
WIE = -- 

b '  
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FIGURE 2. Graphs of the steady-streaming velocities at the edge of the Stokes layer, V(s )  (- - --) and 
W(8) (-), against @(a), calculated from (3.11) and (3.12) for the case of an inextensible boundary 
with b, = 0.8. 

If the oscillation is given in dimensional terms by 

b = a0&(1 +mint) ,  6 = U,iSo eint, 

then the transverse steady-streaming function U(s)  is identically zero, and the 
longitudinal function is constant : 

w(8) = -;. (5.1) 

The secondary streaming problem is thus very similar to the two-dimensional case 
examined by Secomb (1978), for which W = - t  was also obtained. There is a 
difference, however, because in this case neither transverse component of velocity, 
u, nor uy,  is zero, and wI depends on x as well as y (see $6). 

Case 2 .  Inextensible wall 
Here the value of s, (equation (2.4)), of any element of the wall remains constant at 
all times. Differentiating (2.4) then gives 

d0’ , 

where c ( 0 )  is given by (2.7), so we see from (2.6) and (3.2) that u,, and uaE are no 
longer equal, with the result that U(s)  in (3.11) is not zero. We also note that a and 
b both vary with t ,  but not independently because the total perimeter of the tube 
remains constant. The ends of the major and minor axes are always at 8 = 0 and in 
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- l  t 0 (degrees) 

-2 - 

- 3  - 

- 4  - 

- 5  - 

-9t 
FIQURE 3. As figure 2, with h0 = 0.4, together with plots of VO&) and UOw(8) (dmh-dot curves). 

respectively, so d(0) = &) = 0; combined with the condition of inextensibility (5.2), 
applied at 8 = in, this gives the following relation between a(t) and b( t )  : 

d8 = 0. 
jr ad sin2 8 + b6 cos2 8 

Thus, for a harmonic variation of a with time, 

a = a,( 1 + 6 eint), 

b = a, 6,( 1 + e,u eint), 

we obtain (dimensionally) 

where 

(5.3) 

(5.4) 

and a(0) = (sin2 8 + 6; COS* e)t. (5.5) 

We see that 6 is negative when ci is positive, so some elements of the wall move in 
while others move out. 

The steady-streaming velocities U(8) and W(8) are now evaluated numerically from 
(3.11) and (3.12), using (2.4)-(2.7), (2.20), (3.2), (3.3) and (3.5). The results are plotted 
(against 0 rather than s, for convenience) in figures 2,3 and 4, for the values 6, = 0.8, 
0.4 and 0.2 respectively; also plotted for comparison (on figure 3 only) are the 
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FIGURE 5. Sketch of vectors representing U(s)  and W(s) ,  taken from figure 3 (bo = 0.4). 
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leading-order tangential velocity amplitudes, uow(s) and uoE(s), both positive for all 
s (that is also true for the other values of 6,). We can see that W is negative near 
the minor axis, which is consistent with the result from Case 1 because the flow is 
more two-dimensional there ; this is particularly noticeable for the smallest value of 
6, (=  0.2, figure 4) in which W remains almost constant for a considerable distance 
from the minor axis (until 0 x in) before falling rapidly near the end of the major 
axis. As 6, increases W becomes less uniform near the minor axis and changes sign 
to become positive near the end of the major axis (small 0) when 6, exceeds a critical 
value somewhat in excess of 0.4 (see the end of $6 for further discussion). In all cases 
U is positive (towards the minor axis) near the minor axis and negative near the major 
axis. The distributions of W and U are sketched qualitatively in figure 5, for the case 
6, = 0.4. We should note that the steady-streaming velocities are largest for the 
smallest value of 60, because the area change for a given major axis change is then 
greatest. 

6. Steady streaming in the core: R, < 1 

In the limit of small R, (4.1) the steady-streaming motion in the core is a steady 
Stokes flow in which inertia is negligible. The governing equations, expressed in 
Cartesian coordinates and scaled as indicated in $4, therefore become 

v:w, = F2, (6.1) 

au, au 
- + 2 + w 1  ax ay = 0, 

where @,,pZ) are equal to R, multiplied by the mean values of po,p2, and 

The boundary conditions (4.2) are applied on the undisturbed ellipse 

The problem must be solved numerically in general. 
In the present limit, the problem for w1 can be separated from that for the 

secondary velocities u, and uy. For any given value of the constant p2, Poisson’s 
equation (6.1) can be solved subject to w1 = W (known) on the ellipse. The actual 
value of F2 is determined from the condition that there must be no mean mass flow 
along the tube; i.e. 

I r r  \ 

where the integral is taken over the time-dependent cross-section A(t)  and the angle 
brackets represent the time mean. Recalling that variables are expanded in the form 
(3.4) we can rewrite this as 
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Velocity 
scale 

0.10 
- 

0 '  I I I 
0.2 0.4 0.6 0.8 1 .o 

FIGURE 6. Profiles of transverse secondary streaming velocities (a) u, and (b)  uy in the core, for 
the case of a constant major axis (go = 0.8). 

where A, is the mean area of the ellipse, the integral on the right-hand side is taken 
round the perimeter and €An is the (time-dependent) normal displacement of the 
element of boundary at 8. In our caw,  however, woE is independent of s, from (3.3), 
and is proportional to -A, so the right-hand side of (6.5) is proportional to 
- <A(A-A,))  which is zero; thus, eventually, 

!IAo w1 dx dy = 0. 

Numerically, the value of rS, and the solution for w1 are obtained iteratively. 

two-dimensional Stokes flow problem by writing 
Knowing wl ,  we can transform the problem for u, and uy into a conventional 

(6.7) 
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I I I I I I 
0.2 0.4 0.6 0.8 1 .o 0‘ 

FIGURE 7. Contours of axial steady-streaming velocity w1 in the core, for the caae of an inextensible 
boundary with 6,, = 0.8. The broken line is the null contour. 

Equations (6.2) and (6.3) now reduce to the biharmonic equation 

v:Y=o,  

with boundary conditions (from (4.2)) 

- = - U c o s ~ + ~ o z w ~ d x ~  U,(x,y), I ay 
a Y  

_-  - - U sin+ = V,(x, y), av 
ax I 

applied on the ellipse (6.4). Note that (6.6) ensures no net flux across the boundary, 

I( U, dy- V, dx) = 0, 

a necessary condition on a two-dimensional incompressible flow. The numerical 
solution of (6.8) is achieved by splitting it into two (the ‘stream function-vorticity ’ 
formulation) : 

vz!P=y,  vzy=o ,  

and solving iteratively using a centred-difference scheme (Roache 1972). First , values 
of yon the boundary are guessed, then the problem for 5 is solved (using a Gauss-Seidel 
method) and next the problem for Y is solved, leading to a new estimate for 5 on 
the boundary. Iteration is continued until satisfactory convergence is achieved, 
defined by 

Max I yj- y y l  I G €0, 
& 3 

where the suffices refer to spatial position and m refers to iteration number; e0 was 
taken equal to lo-*. Convergence was achieved after at most 160 iterations. The only 
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FIQURE 8. Profiles of transverse secondary streaming velocities (a) u, and (a) uI/ in the core, 
corresponding to the axial contours of figure 7 (Go = 0.8). 

difficult aspect of the computation was choosing a suitable interpolation scheme for 
evaluating y at the elliptical boundary. We have used the method adopted by Gupta 
& Manohar (1979). In  this scheme, the values of on the boundary are obtained from 
the values of Y inside the boundary, using a second-order interpolation formula. 

In order to test our numerical program we first solved the problem of the 
axisymmetric tube for which the analytical solution w u  given by Secomb (1978). 
Here U = 0 and W = -3 ,  the same everywhere on the circular boundary, and the 
solution is 

w1 = 3 [ 1 - 2 ( ~ ' + ~ ~ ) ] ,  Y = + x J ( ~ - s ~ - ~ ~ ' ) ,  pZ = -24; (6.10) 

the transverse velocities are purely radial in this case. The computed values of wl, 
u, and uy differed from those calculated from (6.10) by at most 1 yo when we took 
a grid size of Ax = Ay = 0.1. 

An analytical solution to the problem is also available for the elliptical Case 1 ,  of 
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FIQURE 9. As figure 7, with 6, = 0.4. 
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constant major axis. Here again U = 0 and W = constant = - f ,  and in this case the 
solution is rather similar to (6.10): 

Once more, agreement between the computed and the analytical solutions was within 
1 % for Ax = 0.1 and Ay = 0.02, even for values of 6, as low as 0.2. Profiles of the 
two transverse velocity components in this case are shown in figure 6; they are both 
directed towards the axes everywhere, as in the two-dimensional and axisymmetric 
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FIQURE 11. As figure 7, with &, = 0.2. 
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FIQURE 12. As figure 8, with KO = 0.2. 

cases. This is expected because the axial steady streaming, towards z = 0 near the 
wall, has to be turned away from z = 0 near the tube centreline. 

No analytical solution is possible in Case 2 which, with an inextensible boundary, 
is the most realistic case examined. The numerical solution in this case is presented 
in figures 7-12 for three values of 6, : 0.8,0.4 and 0.2. Figures 7 ,9  and 11 show contours 
of the axial steady-streaming velocity, wl, while figures 8,lO and 12 exhibit secondary 
velocity profiles. A number of features of these flow patterns deserve comment. For 
the least elliptical case (6, = 0.8, figure 7) the axial velocity distribution in fact looks 
most two-dimensional, in that the contours of axial velocity are roughly parallel to 
the major axis and its profiles are fairly flat. As the tube’s ellipticity becomes more 
pronounced, the contours of axial velocity tend to become more elliptical, and the 
region of negative axial velocity extends to the end of the major axis (figures 9 and 
11 ; cf. figures 3 and 4). In each case the secondary flow in the first quadrant (figures 
8, 10, 12) consists of one large counter-clockwise gym with a small clockwise eddy 
near the end of the major axis, corresponding to the reversal of the driving velocity 
U near 0 = 0 (figures 2-4). These secondary flows are of course not divergence-free, 
because of their interaction with the axial motion. 

7. Discussion 
The solution of steady-streaming problems on general boundaries, with different 

tangential velocities at the wall and in the core flow outside the Stokes layer, is a 
cumbersome process. This was made very clear by Longuet-Higgins (1953) in a 
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general two-dimensional geometry. We have extended his formulation to the 
three-dimensional case of the present problem, which is not much more complicated 
because of the simple form of the z-dependence. The elliptical geometry combined 
with the three-dimensionality, however, makes the problem of computing the steady 
streaming in the core significantly more difficult than in the corresponding axisym- 
metric and two-dimensional geometries analysed by Secomb (1978). Except in the 
particularly simple Case 1, even the small-R, solution must be solved numerically. 
In  his examples, Secomb was able to solve both the small-R, and the large-R, 
problems analytically, and to show that the axial velocity profiles were qualitatively 
similar in each case. 

There may be such similarity in our problem also, but we have not as yet solved 
the large-R, problem even in the simple Case 1. We formulate it on the assumption 
that, as in Secomb's problems, mean vorticity is distributed throughout the core and 
is not confined to thin boundary layers. We thus seek an inviscid, rotational flow, 
and the governing equations (from 94) can be reduced to 

(U'V)W, = -w;-p2 ,  (7.1) 

(7.2) 

V'U = -wl, (7.3) 

(U'V) 5 = +W, 5, 

where u = (u,,u,) is the two-dimensional velocity field in the transverse plane, p, 
is a constant and V is the two-dimensional gradient operator. Both u and w1 are 
functions only of (2, y). The boundary conditions are still given by (4.2), applied on 
the ellipse (6.4), and we note that they imply the condition 

u'n = 0 (7.5) 

on the boundary. The constraint (6.6) on w1 is also still true. 
The only conclusion that we can draw from this problem is an expression for the 

mean pressure term p,: integrate (7.1) across the tube cross-section A,, using (7.3) 

Thus p, is negative, and the mean pressure in the core ( ccz2p,)  is highest near z = 0, 
whatever the distribution of U and W at the wall. This is consistent with the small-R, 
solutions given by (6.10) and (6.11), and can be explained as follows. The steady- 
streaming velocity at the wall is directed on average towards z = 0, so the pressure 
must be highest there in order for its gradient to drive a compensating flow away 
from z = 0. This pressure gradient has to overcome viscous forces in the small-R, case, 
and inertial forces (inward-moving fluid particles are decelerated and re-accelerated 
outwards) in the large-R, case. 

This conclusion suggests that oscillations in an elastic tube would generate a (mean) 
bulge in the vicinity of z = 0, whatever the value of R,, and this would tend to counter 
the Bernoulli effect which is usually associated with collapse. However, once a bulge 
or localized collapse has occurred, the present theory will become invalid and 
non-parallel tube effects such as flow separation will have to be considered. Thus two 
problems are immediately suggested for future research. One is the numerical solution 
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of the core steady-streaming problem, formulated in $4, for finite R,. The other is 
the generalization of the present work to include non-parallel and elastic walls. These 
are both challenging problems which are currently under investigation. 

We are grateful to the UK Overseas Development Administration for their support 
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